Vector Operations for Accelerating Expensive Bayesian Computations – A Tutorial Guide
نویسندگان
چکیده
Many applications in Bayesian statistics are extremely computationally intensive. However, they often inherently parallel, making them prime targets for modern massively parallel processors. Multi-core and distributed computing is widely applied the community, however, very little attention has been given to fine-grain parallelisation using single instruction multiple data (SIMD) operations that available on most CPUs. In this work, we practically demonstrate, standard programming libraries, utility of SIMD approach several topical applications. Using C language, show can improve single-core floating point arithmetic performance by up a factor 6× compared scalar code more than 25× with optimised R code. Such improvements multiplicative any gains achieved through multi-core processing. We illustrate potential accelerating computations provide reader techniques exploiting processing environments.
منابع مشابه
A Layered Architecture for Accelerating Matrix Computations
Many scientific and engineering applications are naturally expressed in terms of dense matrix or vector algorithms. This paper presents an FGPA-based matrix acceleration engine that improves the performance of dense matrix and vector algorithms. The engine offloads common data management tasks normally performed by processing resources onto a dedicated sequencer. The sequencer adopts an event-b...
متن کاملAccelerating Bayesian Inference in Computationally Expensive Computer Models Using Local and Global Approximations
Computational models of complex phenomena are an important resource for scientists and engineers. However, many state-of-the-art simulations of physical systems are computationally expensive to evaluate and are black box—meaning that they can be run, but their internal workings cannot be inspected or changed. Directly applying uncertainty quantification algorithms, such as those for forward unc...
متن کاملBayesian Optimization with Expensive Integrands
We propose a Bayesian optimization algorithm for objective functions that are sums or integrals of expensive-to-evaluate functions, allowing noisy evaluations. These objective functions arise in multi-task Bayesian optimization for tuning machine learning hyperparameters, optimization via simulation, and sequential design of experiments with random environmental conditions. Our method is averag...
متن کاملGuide e tutorial
Come effettuare una ricerca bibliografica [6] (luglio 2017) Ho un riferimento bibliografico: libro o articolo? [7] (luglio 2017) Come leggere e scrivere riferimenti bibliografici [8] (luglio 2017) Programmi per la gestione dei riferimenti bibliografici: Mendeley [9] Cerco un libro in tutte le biblioteche pisane (Meta Opac Pisano) [10] (luglio 2017) Come trovare un libro sugli scaffali [11] (lug...
متن کاملGuide e tutorial
Come effettuare una ricerca bibliografica [6] (gennaio 2018) Ho un riferimento bibliografico: libro o articolo? [7] (luglio 2017) Come leggere e scrivere riferimenti bibliografici [8] (luglio 2017) Programmi per la gestione dei riferimenti bibliografici: Mendeley [9] Cerco un libro in tutte le biblioteche pisane (Meta Opac Pisano) [10] (luglio 2017) Come trovare un libro sugli scaffali [11] (lu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2022
ISSN: ['1936-0975', '1931-6690']
DOI: https://doi.org/10.1214/21-ba1265